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We study the influence of intrinsic decoherence in the presence of Stark shift for the
two-mode Jaynes–Cummings model (JCM). An analytic solution of the Milburn equa-
tion for the multiquant two-mode JCM Hamiltonian is obtained. We use this solution to
investigate the influence of intrinsic decoherence and Stark shift on nonclassical proper-
ties of the system, for the resonant and the off-resonant cases. We compare the behavior
of the system in the case of having a coherent superposition state and a statistical mixture
of coherent states as an initial field.

KEY WORDS: intrinsic decoherence; Stark shift; two-mode JCM.

1. INTRODUCTION

The motion of the center-of-mass (CM) of ultracold trapped ions has to be
dealt with quantum mechanically (Diedrichet al., 1989; Monroeet al., 1995a).
Laser irradiation is used to monitor the ion’s internal and external degrees (Blockley
et al., 1992, 1993; Ciracet al., 1993a,b; de Matos Filho and Vogel, 1994, 1996a,b;
and Vogel and de Matos, 1995). On the other hand, ion trap quantum computation,
first introduced by Cirac and Zoller (1995), is a potentially powerful technique for
the storage and manipulation of quantum information. Recently, much progress
has been made in the preparation, manipulation, and measurement of quantum
states of the center-of-mass vibrational motion of a single atom experimentally
(Itanoet al., 1997; Kinget al., 1998; Leibfriedet al., 1996; Meekhofet al., 1996;
Monroeet al., 1995b,c, 1996; Rooset al., 1999) and theoretically (Bardoffet al.,
1996; Cirac and Zoller, 1995; de Matos Filho and Vogel, 1994, 1996; D’Helon and
Milburn 1995; Gerryet al., 1997; Gouet al., 1996a,b,c; Gou and Knight, 1996;
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Kneer and Law, 1998; Poyatoset al., 1996a,b; Steinbachet al., 1997; Wallentowitz
et al., 1997; Wallentowitz and Vogel, 1995), which are not only of fundamental
physical interest but also of particular use for sensitive detection of weak signals
(Bachor, 1998) and quantum computation in ion trap (Cirac and Zoller, 1995;
Monroeet al., 1995b).

Models have been constructed to describe a two-level ion undergoing quan-
tized vibrational motion within a harmonic trapping potential and interacting with
a classical light field (Blockleyet al., 1992, 1993; Ciracet al., 1992, 1993a,b,c).
It has been pointed out that the dynamics of a trapped ion can be described by a
Hamiltonian similar to a Jaynes–Cummings model (Jaynes and Cummings, 1963)
or its generalizations under certain regimes (Buzeket al., 1997; de Matos Filho
and Vogel, 1994, 1996; Gouet al., 1996a,b,c; Steinbachet al., 1997; Vogel and de
Matos Filho, 1995). Despite these heroic experimental achievements, the quantum
motion of a single atom is obviously limited by sources of decoherence. Decoher-
ence arises from random and unknown perturbations of the Hamiltonian. If these
perturbations cannot be followed exactly, experiments must average over them.
This leads to an effective irreversible evolution of the atom and a suppression of
coherent quantum features through the decay of off-diagonal matrix elements of
the density operator in some basis. Complementary to the decay of off-diagonal
matrix elements, noise is added to conjugate variables. This can appear as a heating
of the atom if noise is added to the momentum variable. On the other hand, there
has been increased interest in the decoherence problem in quantum mechanics be-
cause of its possible application in quantum measurement processes and quantum
computers (Shore, 1995; Chuang and Yamamoto, 1997).

The intrinsic decoherence approach has been proposed and investigated in
the framework of several models (Caves and Milburn, 1987; Diosi, 1989; Ellis
et al., 1989, 1990; Ghirardiet al., 1986). In particular, Milburn (1993) proposed
a simple intrinsic decoherence model based on an assumption that on sufficiently
short time steps the system evolves in a stochastic sequence of identical unitary
transformations. This assumption modifies the von Neumann equation for the
density operator of a quantum system through a simple modification of the usual
Schrödinger evolution equation. The off-diagonal elements of the density operator
in Milburn’s model are intrinsically suppressed in the energy eigenstate basis,
thereby intrinsic decoherence is realized without the usual dissipation associated
with the normal decay. The decay is entirely of phase dependence only. Free
evolution of a given quantum system has been discussed early (Milburn, 1993) but
investigations of interacting subsystems follow (Chen and Kuang, 1994; Hessian,
2002; Kuanget al., 1995; Kuang and Chen, 1994; Moya-Cessaet al., 1993; Obada
et al., 1998, 1999a).

Decoherence due to normal decay is often said to be the most efficient effect
in physics, to a point where observation comes too late after the effect has reached
completion (Omne’s, 1997). The effect in action has been observed in quantum
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optics where the decoherence phenomena transforming a Schr¨odinger-cat into a
statistical mixture was observed while unfolding (Bruneet al., 1996). There has
been considerable interest in the properties of the so-called superposition states
of light (SS) involving superpositions of coherent states with strongly differing
amplitude (Buzeket al., 1992; Buzek and Knight, 1991; Janszky and Vinogradov,
1990; Mandel, 1986; Schleichet al., 1991; Vidiella-Barrancoet al., Wodkiewicz
et al., 1987). One particularly interesting case is the superposition of two coherent
states of fixed amplitude but opposite phase (Buzeket al., 1992; Buzek and Knight,
1991; Janszky and Vinogradov, 1990; Mandel, 1986; Schleichet al., 1991; Vidiella-
Barrancoet al., 1992). Due to the quantum interference, the properties of such
a superposition are very different from the properties of the constituent states
(coherent states), as well as from the incoherent superposition or statistical mixture
(SM) of coherent states.

The purpose of this work is to study the influence of intrinsic decoherence
in the presence of Stark shift for the two-mode JCM. In particular, we are inter-
ested in the decay of macroscopic coherences induced by intrinsic decoherence
by comparing the dynamics of SS and SM states. We will obtain an exact solution
of the Milburn equation for the multiquant JCM. We use this solution to study the
influence of the intrinsic decoherence on nonclassical properties in the presence
of Stark shift in the resonant or the off-resonant cases. Finally, conclusions are
provided. This paper is organized as follows: In section 2, we obtain an exact
solution of the Milburn equation for the multiquanta JCM and give the explicit
expression of this solution in the two-dimensional basis of the particle. Section
3 is devoted to an investigation of the influence of the intrinsic decoherence on
nonclassical properties either in the resonant or the off-resonant cases. Finally,
some concluding remarks are provided.

2. EXACT SOLUTION OF THE MILBURN EQUATION

We consider a quantum system described by the density operatorρ(t). In
standard quantum mechanics, dynamics of the system is governed by the evolution
operatorÛ (t) = exp[− i

h t Ĥ ], whereĤ is the Hamiltonian describing the system.
Milburn assumed (Milburn, 1993) that on sufficiently short time steps the system
does not evolve continuously under unitary evolution but rather in a stochastic
sequence of identical unitary transformations. On the basis of this assumption,
he has derived the equation for the time evolution density operatorρ(t) of the
quantum system (Milburn, 1993)

d

dt
ρ̂(t) = γ

{
exp

[
− i

hγ
Ĥ

]
ρ̂(t) exp

[
i

hγ
Ĥ

]
− ρ̂(t)

}
(1)

whereγ is the mean frequency of the unitary time step. This equation formally
corresponds to the assumption that on sufficiently short time steps the system
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evolves with a probabilityp(τ ) = τ
2γ . Obviously, the generalized Eq. (1) alters the

Schrödinger dynamics. It reduces to the ordinary von Neuman equation for the
density operator in the limitγ →+∞. Expanding Eq. (1) to first order inγ−1,
the following dynamical equation is obtained:

d

dt
ρ̂(t) = − i

h
[ Ĥ , ρ̂] − 1

2h2γ
[ Ĥ , [Ĥ , ρ̂]] (2)

which is the Milburn equation that we shall study below. This equation has been
solved for a harmonic oscillator and a precessing spin system (Milburn, 1993) the
simple JCM (Chen and Kuang, 1994; Kuang and Chen, 1994; Moya–Cessaet al.,
1993), the resonant multiphoton JCM (Kuanget al., 1995), and the nondegener-
ate two-mode JCM (Obadaet al., 1998, 1999a; Hessian, 2002). In what follows
we shall consider the exact solution of this equation for the two-mode JCM in the
presence of Stark shift with a detuning parameter in either a superposition state
(SS) or a mixture state (SM).

We shall consider a Hamiltonian model that consists of two modes interacting
with a three-level particle (atom or trapped ion) via Raman transition. We consider
the nondegenerate case in which pairs of photons with two different frequencies are
created or annihilated. The quantized radiation field is considered in the rotating
wave approximation frame taking into account the effect of Stark shift. The atomic
levels have identical parities such that each dipole is coupled with different modes
of the field and to the set of intermediate states. If we assume that the intermediate
states do not admit dipole transitions between themselves and the interaction field
modes are far off-resonance from those intermediate states, then the particle can
be seen as an effective two-level system by means of adiabatic elimination of the
intermediate state (Alsing and Zubairy, 1987; Li and Peng, 1995; Obadaet al.,
1999b). The Hamiltonian for the system, in the rotating wave approximation, is
written as

Ĥ = ω0

2
σ̂z+

2∑
j=1

ω j â
†
j â j + â†1â1β1|g〉〈g|â†2â2β2|e〉〈e|

+ λ(â†k1
1 âk2

2 σ̂− + âk1
1 â†k2

2 σ̂+
)

= ω1

[
n̂1+ k1

2
(I + σ̂z)

]
+ ω2

[
n̂2+ k2

2
(I − σ̂z)

]
− 1

2
(k1ω1+ k2ω2)I

+ 1
2
σ̂z+ β1n̂1|g〉〈g| + β2n̂2|e〉〈e| + λ

(
â†k1

1 âk2
2 σ̂−

+ âk1
1 â†k2

2 σ̂+
)
, (h = 1) (3)

where the detuning parameter1 = ω0− k1ω1+ k2ω2, âj (â
†
j ) andn̂ j = â†j â j are

the annihilation (creation) and number operators for thejth mode,β1 andβ2 are
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parameters describing the intensity-dependent Stark shifts of the two levels that
are due to the virtual transition to the intermediate relay level,λ is the particle-field
coupling constant,ω1 andω2 are the field frequencies for the two modes,ω0 is
the transition frequency of the particle (atom or trapped ion), ˆσz is the population
inversion operator, and ˆσ± are the ‘spin flip’ operators that satisfy the relation
[σ̂+, σ̂−] = σ̂z and [σ̂z, σ̂±] = ±2σ̂±.

Now, we look for the exact solution for the density operator ˆρ(t) of the Milburn
Eq. (2) taking into account the Hamiltonian (3).

For convenience, we introduce three auxiliary superoperators (Chen and
Kuang, 1994; Hessian, 2002; Kuanget al., 1995; Kuang and Chen, 1994; Moya–
Cessaet al., 1993; Obadaet al., 1998, 1999a)̂J, Ŝ, andL̂ defined by

exp(Ĵτ )ρ̂(t) =
∞∑

k=1

1

k!

(
τ

γ

)k

Ĥ
k
ρ̂(t)Ĥ

k
(4)

exp(Ŝτ )ρ̂(t) = exp(−i Ĥτ )ρ̂(t) exp(i Ĥτ ) (5)

exp(L̂τ )ρ̂(t) = exp

[
− τ

2γ
Ĥ

2
]
ρ̂(t) exp

[
− τ

2γ
Ĥ

2
]

(6)

where the Hamiltonian̂H is given by Eq. (3).
It is straightforward to obtain the formal solution of the Milburn Eq. (2) as

follows:

ρ̂(t) = exp(Ĵ t) exp(Ŝt) exp(L̂t)ρ̂(0) (7)

whereρ̂(0) is the density operator of the initial particle-field system.
We assume that the initial two modes of the field inside the cavity are in

superposition states and the particle in its excited state|e〉, so that:

ρ̂(0) = 1

A
[|α1, α2〉〈α1, α2| + r 2| − α1,−α2〉〈−α1,−α2|
+r (|α1, α2〉〈−α1,−α2| + | − α1,−α2〉〈−α1,−α2|)]
×⊗ |e〉〈e| (8)

where A = [1+ r 2+ 2r exp(−2(α2
1 + α2

2))], andα j ( j = 1, 2) are real. The pa-
rameterr can assume the values−1, 0, and 1, which corresponds to an odd coherent
state, a coherent state, and an even coherent state, respectively. As we know, be-
cause of the interference term in Eq. (8) it has a rapid decay to a SM when we
include dissipation, so we want to see how different would be the behavior of
the system if the input states are statistical mixture of the states|α1, α2 > and
| − α1,−α2 > , i.e.,

ρ̂(0)= 1

2
[|α1, α2〉〈α1, α2| + | − α1,−α2〉〈−α1,−α2|] ⊗ |e〉〈e| (9)
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with |α1, α2〉 = |α1⊗ |α2〉 defined by

|α1, α2〉 =
∞∑

n1,n2=0

Qn1 Qn2|n1, n2〉 =
∞∑

n1,n2=0

Qn1 Qn2|n1〉 ⊗ |n2〉 (10)

whereQnj = e−α
2
j /2

α
n j
j√
nj !

, ( j = 1, 2).
In a two-dimensional basis for the particle the Hamiltonian (3) can be ex-

pressed as a sum of (Ĥ ◦), which is diagonal in this basis and (Ĥ I ), which is not.
It is easy to prove that (̂H ◦) and (Ĥ I ) commute, i.e.

[ Ĥ ◦, Ĥ I ] = 0. (11)

Thus, the representation now takes the form

Ĥ ◦ =
[

Ŵ(n̂1+ k1, n̂2)+ δ̂+(n̂1+ k1, n̂2) 0

0 Ŵ(n̂1, n̂2+ k2)+ δ̂+(n̂1, n̂2+ k2)

]

(12)

Ĥ I = λ
[[

1
2λ + 1

λ
δ̂−(n1+ k1, n2)

]
âk1

1 â†k2
2

â†k1
1 âk2

2 − [ 12λ + 1
λ
δ̂−(n1, n2+ k2)

]
]

(13)

with

Ŵ(n1, n2+ k2) = ω1n̂1+ ω2(n̂2+ k2), δ̂±(n1, n2+ k2)

= 1

2
[β2(n̂2+ k2)± β1n̂1]. (14)

Similarly, the square of the Hamiltonian (3) can also be expressed as a sum of two
matrices in the form

Ĥ
2 = Â+ B̂ [ Â, B̂] = 0 (15)

whereÂ is diagonal in the form

Â =
[
2̂2(n1+ k1, n2) 0

0 2̂2(n1, n2+ k2)

]
(16)

and B̂ is given by

B̂ = 2λ

[
η̂(n1+ k1, n2)ζ̂ (n1+ k1, n2) âk1

1 â†k2
2 ζ̂ (n1, n2+ k2)

ζ̂ (n1, n2+ k2)âk1
1 â†k2

2 −η̂(n1, n2+ k2)ζ̂ (n1, n2+ k2)

]
(17)

with

η̂(n1, n2+ k2) =
[
1

2λ
+ 1

λ
δ̂−(n1, n2+ k2)

]
, ζ̂ (n1, n2+ k2)
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= [Ŵ(n1, n2+ k2)+ δ̂+(n1, n2+ k2)] (18)

µ̂2(n1, n2+ k2) = η̂2(n1, n2+ k2)+ ν̂2(n1, n2+ k2) (19)

ν̂2(n1, n2+ k2) = â†k1
1 âk1

1 âk2
2 â†k2

2 =
n̂1!

(n̂1− k1)!

(n̂2+ k2)!

n̂2!
(20)

and

2̂2(n1, n2+ k2) = ζ̂ 2(n1, n2+ k2)+ λ2µ̂2(n1, n2+ k2). (21)

For convenience, we introduce the auxiliary operator ˆρ2(t) defined by

ρ̂2(t) = exp(Ŝt) exp(L̂t)ρ̂(0)

= exp(−i ĤI t) exp

(
− t

2γ
B̂

)
ρ̂1(t) exp

(
− t

2γ
B̂

)
exp(i Ĥ I t). (22)

The auxiliary operator ˆρ1(t) for the initial condition (Eq. 9) defined by:

ρ̂1(t) =
[ |9̂+(t)〉〈9̂+(t)| + |9̂−(t)〉〈9̂−(t)| 0

0 0

]
(23)

where

|9̂±(t)〉 = 1√
2

exp

[
− t

2γ
2̂2(n1+ k1, n2)

]
× exp[−i ζ (n1+ k1, n2)t ] | ±α1,±α2〉. (24)

While for the initial (Eq. 8) the operator ˆρ1(t) defined by:

ρ̂1(t) =
[

[| 9̂+(t)〉 + r | 9̂−(t)〉][ 〈9̂+(t) | +r 〈9̂−(t)|] 0
0 0

]
(25)

with

|9̂±(t)〉 = 1√
A

exp

[
− t

2γ
2̂2(n1+ k1, n2)

]
× exp[−i ζ̂ (n1+ k1, n2)t ] | ±α1,±α2〉. (26)

The powers of the operator̂B can be written as

B̂2k =
[

[2λζ̂ (n1 + k1, n2)µ̂(n1 + k1, n2)]2k 0

0 [2λζ̂ (n1, n2 + k2)µ̂(n1, n2 + k2)]2k

]
(27)

B̂2k+1 =
[

η̂1
[2λζ̂1µ̂1]2k+1

µ̂1
âk1

1 âk2
2

[2λζ̂2µ̂2]2k+1

µ̂2

[2λζ̂2µ̂2]2k+1

µ̂2
â†k1

1 â†k2
2 −η̂2

[2λζ̂2µ̂2]2k+1

µ̂2

]
(28)



P1: GCR

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470304 September 26, 2003 16:39 Style file version May 30th, 2002

1658 Ibrahim and Hessian

then we can write the operator exp[− t
2γ B̂] in the form

exp

[
− t

2γ
B̂

]
=
[

X̂1(t)− η̂1
Ŷ1(t)
µ̂1

−âk1
1 âk2

2
Ŷ2(t)
µ̂2

− Ŷ2(t)
µ̂2

â†k1
1 â†k2

2 X̂2(t)+ η̂2
Ŷ2(t)
µ̂2

]
(29)

where

X̂2(t) = cosh

[
λt

γ
ζ̂2µ̂2

]
, Ŷ2(t) = sinh

[
λt

γ
ζ̂2µ̂2

]
. (30)

Similarly, we can write the operator exp[−i ĤI t ] in the two-dimensional basis for
the particle as

exp[−i ĤI t ] =
[

Ĉ1(t)− i η̂1
Ŝ1(t)
µ̂1

−i âk1
1 âk2

2
Ŝ2(t)
µ̂2

i Ŝ2(t)
µ̂2

â†k1
1 â†k2

2 Ĉ2(t)+ i η̂2
Ŝ2(t)
µ̂2

]
(31)

with

Ĉ2(t) = cos[λtµ̂(n1, n2+ k2)] and Ŝ2(t) = sin[λtµ̂(n1, n2+ k2)]. (32)

Then,

exp[−i ĤI t ] exp

(
− t

2γ
B̂

)
=
[

R̂1(t)− η1
V̂1(t)
µ̂1

−âk1
1 âk2

2
V̂2(t)
µ̂2

− V̂2(t)
µ̂2

â†k1
1 â†k2

2 R̂2(t)+ η2
V2(t)
µ̂2

]
(33)

where

R̂2(t) = Ĉ2(t)X̂2(t)+ i Ŝ2(t)Ŷ2(t) V̂2(t) = Ĉ2(t)Ŷ2(t)+ i Ŝ2(t)X̂2(t). (34)

Note that in the above Eqs. (28–34), we have used the subscript 1 instead of
(n1+ k1, n2) and 2 instead of (n1, n2+ k2).

Now, we can obtain an explicit expression for the operator ˆρ2(t) for the two
initial (9) and (8) as follows:

Substituting Eqs. (23) and (33) into Eq. (22), we obtain an explicit expression
of the operator ˆρ2(t) for the initial (9) as follows:

ρ̂2(t) =
[
9̂+11(t)+ 9̂−11(t) 9̂+12(t)+ 9̂−12(t)

9̂+21(t)+ 9̂−21(t) 9̂+22(t)+ 9̂−22(t)

]
(35)

where we have used the following symbol

9̂±i j (t) = |9̂±i (t)〉〈9̂±i j (t)|(i , j = 1, 2) (36)

with

|9̂±1 (t)〉 =
[

R̂(n1+ k1, n2, t)− 1

2λ

V̂(n1+ k1, n2, t)

µ̂(n1+ k1, n2)

]
|9̂±(t)〉 (37)
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|9̂±2 (t)〉 =
[
−â†k1

1 â†k2
2

V̂(n1+ k1, n2, t)

µ̂(n1+ k1, n2)

]
|9̂±(t)〉 (38)

where|ψ̂±(t) > is given by Eq. (24). Also by substituting Eqs. (25) and (33) into
Eq. (22), we obtain an explicit expression of the operator ˆρ2(t) for the initial (8)
as follows:

ρ̂2(t) =
[
9̂11(t) 9̂12(t)

9̂21(t) 9̂22(t)

]
(39)

where we have used the following symbol

9̂i j (t) = |9̂i (t)〉〈9̂ j (t)|(i , j = 1, 2) (40)

with

|9̂1(t)〉 =
[

R̂(n1+ k1, n2, t)− η̂1
V̂(n1+ k1, n2, t)

µ̂(n1+ k1, n2)

]
× [|9̂+(t)〉 + r |9̂−(t)〉] (41)

|9̂2(t)〉 =
[
−a†k1

1 ak2
2

V̂(n1+ k1, n2, t)

µ̂(n1+ k1, n2)

]
× [|9̂+(t)〉 + r |9̂+(t)〉 + r |9̂−(t)〉] (42)

where|9̂±(t)〉 is given by Eq. (26). By using the definition of the superoperator
Ĵ, it is straightforward to obtain the action of the operator exp(Ĵ t) on the density
operator ˆρ2(t) as follows (Chen and Kuang, 1994; Hessian, 2002; Kuanget al.,
1995; Kuang and Chen, 1994; Moya–Cessaet al., 1993; Obadaet al., 1998, 1999a):

ρ̂(t) =
∞∑

k=0

1

k!

(
t

γ

)k

Ĥ kρ̂2(t)Ĥ k =
[
ρ̂11(t) ρ̂12(t)

ρ̂21(t) ρ̂22(t)

]
(43)

with

ρ̂i j (t) =
∞∑

k=0

1

k!

(
t

γ

)k

M̂ (k)
i j (t) (44)

where the HamiltonianĤ is given by Eq. (3) and the operator ˆρ2 is given by
Eqs. (35) and (39) for SM and SS, respectively. Making use of this solution, we
can evaluate mean values of operators of interest. In what follows, we will use it to
study the influence of the intrinsic decoherence on dynamics of the particle (atom
or trapped ion) and the cavity field in the JCM.
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3. INFLUENCE OF THE INTRINSIC DECOHERENCE ON
NONCLASSICAL PROPERTIES OF THE SYSTEM

In this section, we investigate the influence of the intrinsic decoherence on
nonclassical properties of the particle and the field for the multiquanta two-mode
JCM in the presence of Stark shift with a detuning parameter in either a superpo-
sition state (SS) or a mixture state (SM).

3.1. Population Inversion

It is well known that in the JCM the quantum coherences which are built up
during the interaction between the field and the particle significantly affect the
dynamics of the particle. The existence of the quantum coherences is the reason
why one can observe collapses and revivals of the population inversion of the
particle. Now we evaluate the population inversion in the multiquanta JCM. The
population inversion is defined as the expectation value of the operator ˆσz, i.e.

〈σ̂z(t)〉 = Tr [ρ̂(t)σ̂z]. (45)

By using Eqn. (43), we can express Eqn. (45) in the following form:

〈σ̂z(t)〉 =
∞∑

n1,n2,k=0

1

k!

(
t

γ

)k {
〈n1, n2 | M̂ (k)

11 (t) | n1, n2〉

− 〈n1, n2 | M̂ (k)
22 (t) | n1, n2〉

}
. (46)

If the field is initially prepared in a SM of states| α1, α2〉 and| −α1,−α2〉
(Eq. 9), the population inversion will be:

WM (t) =
∞∑

n1,n2=0

|Qn1|2|Qn2|2
µ2(n1+ k1, n2)

{
η2(n1+ k1, n2)+ ν2(n1+ k1, n2)

× exp

[
−2λ2t

γ
µ2(n1+ k1, n2)

]
cos 2λtµ(n1+ k1, n2)

}
. (47)

As we expected, the population inversion is the same as if the input field was
a coherent state. However, if the field is initially prepared in a superposition of
coherent states SS (Eq. 8), the population inversion will be:

WS(t) =
∞∑

n1,n2=0

|Qn1|2|Qn2|2
µ2(n1+ k1, n2)

[1+ r (−1)n1+n2]2[
1+ r 2+ 2r exp

(− 2
(
α2

1 + α2
2

))]
{
η2(n1+ k1, n2) + ν2(n1+ k1, n2) exp

[
−2λ2t

γ
µ2(n1+ k1, n2)

]
cos 2λtµ(n1+ k1, n2)

}
. (48)
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Fig. 1. Population inversion〈σz(t)〉 as a function of
scaled timeλt/π of the particle initially prepared in
the excited state and the field initially prepared in
a statistical mixture of coherent states|α1, α2〉 and
|−α1,−α2〉(n̄1 = n̄2 = 25) for various values of the
parameterλ

γ
: (a) λ

γ
= 10−6, (b) λ

γ
= 5× 10−5 and

(c) λ
γ
= 10−4.

Now, we discuss the general behavior of the population inversion for the multi-
quanta JCM, when the particle (atom or trapped ion) initially starts in the excited
state and the field initially in a mixture state SM or a superposition of coherent
states SS (even coherent state (r= 1)).

The numerical results are shown in Figs. 1–6, for various values of the deco-
herence parameterλ

γ
, and different values of the Stark shift parameter and fixed

initial mean numbers of quantān1 andn̄2 for two quanta (k1 = k2 = 1).
In Figs. 1 and 2, we plot the population inversion (in the absence of Stark

shift (β1/λ = β2/λ = 0)) for three values of the parameterλ
γ

with the fixed initial
mean numbers of quantān1 and n̄2 in the case of the exact resonance, i.e., the
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Fig. 2. The same as in Fig. 1 but with the field ini-
tially prepared in a superposition state (even coherent
state).

detuning parameter12λ = 0, when the field initially in a mixture state SM and in
a superposition of coherent states SS (even coherent state (r = 1)), respectively.
We see that for a superposition of coherent states SS (even coherent state (r = 1)
(see Fig. 2), the revival time will be approximately half of the revival time for the
SM. This, in effect, due to the interference between the two coherent states in the
superposition, and can be understood looking at the photon number distribution
of the initial fields.

In Figs. 3 and 4 and Figs. 5 and 6, we plotted the population inversion in
the presence of Stark shift (β1/λ = β2/λ = 1.0) and (β1/λ = 0.5,β2/λ = 1.0)
respectively.

In the case described in Figs. 3 and 4, the Stark shift parameter is (β1/λ =
β2/λ = 1.0), which corresponds to the case in which the two levels of the particle
are equally strongly coupled with the intermediate relay level. From these figures,
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Fig. 3. The same as in Fig. 1 but in the presence of
Stark shiftβ1/λ = β2/λ = 1.0.

we see the Stark shift leads to increase of the values of the atomic revivals of the
population inversion (see Figs. 3 and 4).

In Figs. 5 and 6, we show the cases in which the two levels have unequal
Stark shift (β1/λ = 0.5,β2/λ = 1.0). We see the Stark shift leads to decrease of
the values of the atomic revivals of the population inversion (see Figs. 5 and 6).

Also, these figures show that with the decrease of the decoherence parameter
γ , i.e., with a more rapid suppression of quantum coherence we can observe rapid
deterioration of revivals of the population inversion. This means that the decay
of quantum coherence is due to the very specific time evolution described by the
Milburn Eq. (2), i.e., due to the intrinsic decoherence

Obviously, whenγ →∞, the population inversion reduces to the well-known
expression for the population inversion in the off-resonant nondegenerate multi-
photon JCM governed by the von Neumann equation.
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Fig. 4. The same as in Fig. 2 but in the presence of
Stark shiftβ1/λ = β2/λ = 1.0.

3.2. Oscillations of the Number Distribution

It is known that oscillations of the number distribution of the quanta in the
JCM are a kind of the nonclassical effects of the cavity field. To see the influence of
intrinsic decoherence on this kind of nonclassical properties, we discuss statistics
in the field modes. The reduced density operator of the cavity field can be obtained
by taking the trace of the total density operator ˆρ(t) over the atomic states, that is,
ρ̂F = TrAρ̂(t). Then the probability distribution function for findingnj quanta in
the jth mode is calculated from the formula

P(n1, n2+ k2; t) =
∞∑

n1,n2,k=0

1

k!

(
t

γ

){
〈n1, n2 | M̂ (k)

11 (t) | n1, n2〉

+ 〈n1, n2 | M̂ (k)
22 (t) | n1, n2〉

}
. (49)
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Fig. 5. The same as in Fig. 1 but with the presence of
Stark shiftβ1/λ = 0.5,β2/λ = 1.0.

If the field is initially prepared in a SM of states (Eq. 9), we find that

PM (n1, n2+ k2, t) = 〈n1, n2 | ρ̂F (t) | n1, n2〉 = 1

2
| Qn1 |2| Qn2 |2

×
{

1+ η2(n1+ k1, n2)

µ2(n1+ k1, n2)
+ ν2(n1+ k1, n2)

µ2(n1+ k1, n2)

× exp

[
−2λ2t

γ
µ2(n1+ k1, n2)

]
cos 2λtµ(n1+ k1, n2)

}
+ 1

2
|Qn1−k1|2|Qn2−k2|2

{
1− η2(n1, n2+ k2)

µ2(n1, n2+ k2)

− ν
2(n1, n2+ k2)

µ2(n1, n2+ k2)
exp

[
−2λ2t

γ
µ2(n1, n2+ k2)

]
× cos 2λtµ(n1, n2+ k2)

}
(50)
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Fig. 6. The same as in Fig. 2 but with the presence of
Stark shiftβ1/λ = 0.5,β2/λ = 1.0.

If the field is initially prepared in a superposition of coherent states (Eq. 8), we
find:

PS(n1, n2 + k2; t) = 1

2
| Qn1 |2| Qn2 |2

[1+ r (−1)n1+n2]2[
1+ r 2 + 2r exp

(−2
(
α2

1 + α2
2

))]
×
{

1+ η2(n1 + k1, n2)

µ2(n1 + k1, n2)
+ ν2(n1 + k1, n2)

µ2(n1 + k1, n2)

× exp

[
−2λ2t

γ
µ2(n1 + k1, n2)

]
cos 2λtµ(n1 + k1, n2)

}
+ 1

2
| Qn1−k1 |2| Qn2+k2 |2

[1+ r (−1)n1−k1+n2−k2]2[
1+ r 2 + 2r exp

(−2
(
α2

1 + α2
2

))]
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×
{

1− (η2)2

µ2(n1, n2 + k2)
− ν2(n1, n2 + k2)

µ2(n1, n2 + k2)

× exp

[
−2λ2t

γ
µ2(n1, n2 + k2)

]
cos 2λtµ(n1, n2 + k2)

}
(51)

where|Qn1|2 and|Qn2|2 are the initial values for the distribution function given
by Eq. (12). We can use the time-dependent number distribution that are obtained
in Eqs. (50 and 51) to evaluate some quantities relevant to the field statistics. For
example, the mean number of quanta in theith mode are found to be for the two
cases:

〈ni (t)〉M = n̄i + ki

2

∞∑
n1,n2=0

| Qn1 |2| Qn2 |2
ν2(n1+ k1, n2)

µ2(n1+ k1, n2)

×
(

1− exp

[
−2λ2t

γ
µ2(n1+ k1, n2)

]
× cos 2λtµ(n1+ k1, n2)

)
(52)

and

〈ni (t)〉s = n̄i + ki

2

∞∑
n1,n2=0

| Qn1 |2| Qn2 |2
[1+ r (−1)n1+n2]2[

1+ r 2+ 2r exp
(−2

(
α2

1 + α2
2

))]
×
{
ν2(n1+ k1, n2)

µ2(n1+ k1, n2)

(
1− exp

[
−2λ2t

γ
µ2(n1+ k1, n2)

]
× cos 2λtµ(n1+ k1, n2)

)}
(53)

From the above expressions, we see that the intrinsic decoherence term in the
Milburn Eq. (2) leads to the appearance of the decay factors exp[− 2λ2t

γ
µ2(n1+

k1, n2)] in Eqs. (50–53), which are responsible for the weakening of the oscillatory
behavior of the mean number of quanta in the field, where it weakened with the
decrease of the intrinsic decoherence parameterγ .

Obviously, whenγ →∞, Eqs. (50–53) reduce to the usual expressions of
the oscillations of the number distribution and the intensity of the cavity field
governed by the Schr¨odinger dynamics.

4. CONCLUSIONS

In this article, we have studied the two-mode JCM governed by the Milburn
equation in the presence of Stark shift with a detuning parameter in either a
superposition state (SS) or a mixture state (SM). An analytic solution for the
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Milburn equation for the multiquanta model has been obtained. The density oper-
ator is then used to study the influence of the intrinsic decoherence and Stark shift
on nonclassical properties in the JCM, such as population inversion and photon
number statistics. It is shown that intrinsic decoherence suppresses nonclassical
effects of the cavity field in the JCM. Also, we see the Stark shift leads to increase
of the values of the atomic revivals of the population inversion in SM and SS when
the two levels of the particle are equally strongly coupled with the intermediate
relay level, while it leads to decrease of the values of the atomic revivals of the
population inversion when the two levels have unequal Stark shift.

REFERENCES

Alsing, P. and Zubairy, M. S. (1987).Journal of the Optical Society of Amica B4, 177.
Bachor, H. A. (1998). A guide to experiments in quantum optics.Nuovo Cimento, 73B, 27 (1983)

[reprint].
Bardoff, P. J., Leichtle, C., Schrade, G., and Schleich, W. P. (1996).Physical Review Letters77, 2198.
Blockley, C. A. and Walls, D. F. (1993a).Physical Review A47, 2115.
Blockley, C. A. and Walls, D. F. (1993b).Physical Review A47, 2115.
Blockley, C. A., Walls, D. F., and Risken, H. (1992a).Europhysics Letters17, 509.
Blockley, C. A., Walls, D. F., and Risken, H. (1992b).Europhysics Letters17, 509.
Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C., Raimond, J. M., and Haroche,

S. (1996).Physical Review Letters77, 4887.
Buzek, V., Drobny, G., Kim, M. S., Adam, G., and Knight, P. L. (1997).Physical Review A56, 2352.
Buzek, V. and Knight, P. L., (1991).Optics Communications, 81, 331.
Buzek, V., Vidiella-Barranco, A., and Knight, P. L. (1992).Physical Review A45, 6570.
Caves, C. M. and Milburn, G. J. (1987).Physical Review D36, 5543.
Chen, Xin. and Kuang, Le-Man. (1994).Physics Letters A191, 18.
Chuang, I. L. and Yamamoto, Y. (1997).Physical Review A55, 114.
Cirac, J. I., Blatt, R., Parkins, A. S., and Zoller, P. (1993a).Physical Review Letters70, 762.
Cirac, J. I., Blatt, R., Parkins, A. S., and Zoller, P. (1993a).Physical Review Letters70, 762.
Cirac, J. I., Blatt, R., Parkins, A. S., and Zoller, P. (1993c).Physical Review A48, 2169.
Cirac, J. I., Blatt, R., Zoller, P., and Phillips, W. D. (1992).Physical Review A46, 2668.
Cirac, J. I., Parkins, A. S., Blatt, R., and Zoller, P. (1993b).Physical Review Letters70, 556.
Cirac, J. I., Parkins, A. S., Blatt, R., and Zoller, P. (1993b).Physical Review Letters70, 556.
Cirac, J. I. and Zoller, P. (1995).Physical Review Letters74, 4091.
de Matos Filho, R. L. and Vogel, W. (1994a).Physical Review A50, R1988.
de Matos Filho, R. L. and Vogel, W. (1994b).Physical Review A50, R1988.
de Matos Filho, R. L. and Vogel, W. (1996a).Physical Review Letters76, 608.
de Matos Filho, R. L. and Vogel, W. (1996b).Physical Review A54, 4560.
de Matos Filho, R. L. and Vogel, W. (1996c).Physical Review Letters76, 4520.
D’Helon, C. and Milburn, G. J. (1995).Physical Review A52, 4755.
Diedrich, F., Bergquist, J. C., Itano, W. M., and Wineland, D. J. (1989).Physical Review Letters62,

403.
Diosi, L. (1989).Physical Review A40, 1165.
Ellis, J., Mohanty, S., and Nanopaulos, D. V. (1989).Physics Letters B221, 113.
Ellis, J., Mohanty, S., and Nanopaulos, D. V. (1990).Physics Letters B235, 305.
Gerry, C. C., Gou, S.-C., and Steinbach, J. (1997).Physical Review A55, 630.
Ghirardi, G. C., Grassi, R., and Rimini, A. (1990b).Physical Review A42, 1057.



P1: GCR

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470304 September 26, 2003 16:39 Style file version May 30th, 2002

Intrinsic Decoherence in the Presence of Stark Shift 1669

Ghirardi, G. C., Pearle, P., and Rimini, A. (1990a).Physical Review A42, 78.
Ghirardi, G. C., Rimini, A., and Weber, T. (1986).Physical Review D34, 470.
Gou, S.-C. and Knight, P. L. (1996).Physical Review A54, 1682.
Gou, S.-C., Steinbach, J., and Knight, P. L. (1996a).Physical Review A54, R1014.
Gou, S.-C., Steinbach, J., and Knight, P. L. (1996).Physical Review A54, 4315.
Gou, S.-C., Steinbach, J., and Knight, P. L. (1996c).Physical Review A55, 3719.
Hessian, H. A. (2002).International Journal of Theoretical Physics41, 1397.
Itano, W. M., Monroe, C., Meekhof, D. M., Leibfried, D., King, B. E., and Wineland, D. J. (1997).

SPIE Proceedings Physical Review Letters43, 2995.
Janszky, J. and Vinogradov, A. V. (1990).Physical Review Letters64, 2771.
Jaynes, E. T. and Cummings, F. W. (1963).IEEE51, 89.
King, B. E., Wood, C. S., Myatt, C. J., Turchette, Q. A., Leibfried, D., Itano, W. M., Monroe, C., and

Wineland, D. J. (1998).Physical Review Letters81, 1525.
Kneer, B. and Law, C. K. (1998).Physical Review A57, 2096.
Kuang, Le-Man. and Chen, Xin. (1994).Journal of Physics A: Mathematical and General27, L663.
Kuang, Le-Man, Chen, Xin, and Ge, Mo-Lin. (1995).Physical Review A52, 1857.
Leibfried, D., Meekhof, D. M., King, B. E., and Wineland, D. J. (1996).Physical Review Letters77,

4281.
Li, Gao-Xiang. and Peng, J. (1995).Physical Review A52, 465.
Monroe, C., Meekhof, D. M., King, B. E., Jefferts, S. R., Itano, W. M., and Wineland, D. J. (1995).

Physical Review Letters75, 4001.
Mandel, L. (1986).Physica Scripta, T12, 34.
Monroe, C., Meekhof, D. M., King, B. E., Jefferts, S. R., Itano, W. M., Wineland, D. J., and Gould, P.

(1995c).Physical Review Letters75, 4011.
Milburn, G. J. (1993).Physical Review A44, 5401 (1991);47, 2415.
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M., and Wineland, D. J. (1995b).Physical Review

Letters75, 4714.
Meekhof, D. M., Monroe, C., King, B. E., Itanc, W. M., and Wineland, D. J. (1996).Physical Review

Letters76, 1796.
Monroe, C., Meekhof, D. M., King, B. E., and Wineland, D. J. (1996).Science272, 1131.
Moya-Cessa, H., Buzek, V., Kim, M. S., and Knight, P. L. (1993).Physical Review A48, 3900.
Obada, A.-S. F., Abdel-Hafez, A. M., and Hessian, H. A. (1998).Journal of Physics B: Atomic,

Molecular and Optical Physics31, 5085.
Obada, A.-S. F., Abdel-Hafez, A. M., and Hessian, H. A. (1999a).Acta Physica Slovaca49, 381.
Omne’s, R. (1997).Physical Review A56, 3383.
Obada, A.-S. F., Abdel-Hafez, A. M., and Abdel-Aty, M. (1999b).Journal of the Physical Society of

Japan7, 2269.
Poyatos, J. F., Cirac, J. I., and Zoller, P. (1996a).Physical Review Letters77, 4728.
Poyatos, J. F., Walser, R., Cirac, J. I., and Zoller, P. (1996b).Physical Review A53, R1966.
Roos, C., Zeiger, T., Rohde, H., Nagerl, H. C., Eschner, J., Leibfied, D., Schmidt-Kaler, F., and Blatt,

R. (1999).Physical Review Letters83, 4713.
Schleich, W., Pernigo, M., and Kien, F. L. (1991).Physical Review A44, 2172.
Shore, P. W. (1995).Physical Review A52, R2493.
Steinbach, J., Twamley, J., and Knight, P. L. (1997).Physical Review A56, 4815.
Vidiella-Barranco, A., Buzek, V., Knight, P. L., and Lai, W. K. (1992). InQuantum Measurement in

Optics(NATO ASI Series), P. Tombesi and D. F. Walls, eds., Plenum, New York.
Vogel, W. and de Matos Filho, R. L. (1995).Physical Review A52, 4214.
Wallentowitz, S., de Matos Filho, R. L., and Vogel, W. (1997).Physical Review A56, 1205.
Wallentowitz, S. and Vogel, W. (1995).Physical Review Letters75, 2932.
Wodkiewicz, K., Knight, P. L., Buckle, S. J., and Barnett, S. M. (1987).Physical Review A35, 2567.


